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We consider the transport properties of a particle moving on a one-dimensional lattice with nearest

neighbor correlations between the states of the sites.

In particular, we compute analytically the

transmission probability and the autocorrelation of the velocity, and we prove that they have an anoma-

lously slow decay.

PACS number(s): 51.10.+y

I. INTRODUCTION

The diffusion of a particle in a static random medium
has been the subject of many works. Usually, the particle
moves between different random scatterers with which it
interacts according to given rules. The states of the
scatterers are random variables which are, in general, in-
dependent from each other and completely static. The
typical models which have been investigated are the
diffusion of a particle in a Lorentz gas (the particle moves
freely between scatterers until it hits one of them and
change velocity) or the diffusion of a particle in a static
random potential with or without velocities (see [1] for a
nice review and [2-4], among many other references).
Several one-dimensional models of diffusion in a frozen
disorder have been studied, in which the velocity auto-
correlation function presents a long time behavior in ¢ ~“
determined by irregular tails in the static distribution of
scattering properties (for example, the residence times or
the lengths of free intervals between scatterers). The ex-
ponent a then results directly from the law chosen for
this distribution (see [5]). In the case of a Lorentz gas,
the velocity autocorrelation function of the diffusing par-
ticles also has a tail in ¢t~ % with a=d /2+1, but this
behavior is due to dynamically correlated collision rings
and not to correlations present in the medium itself.

On the other hand, situations where the different states
of the scatterers are correlated or fluctuate in time have
not been very much investigated. Recently, we intro-
duced models where the sites are fluctuating independent-
ly in time and we proved the existence of a diffusion con-
stant, although the motion is not Gaussian (because of an
abnormal kurtosis) (see [6—8] and [9]).

In this paper, we consider the case where the states of
the sites are spatially correlated, by short range forces.
This situation is obviously important for the diffusion of a
particle in a solid or a liquid [10], when the time scale of
the diffusing particle is fast compared to the relaxation
time of the solid medium. In both cases, it is rather un-
realistic to assume that the states of neighboring scatter-
ers are independent random variables. On the contrary,
they are rather strongly correlated random variables. As
we shall see, although the forces in the solid are short
range, a coupling between the sites due to these forces in-
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duces immediately an abnormal diffusion, with a long tail
decay of the velocity, and a higher probability of
transmission than in the usual diffusion processes. In the
present model, the long time decay of the velocity auto-
correlation function and the abnormal transmission rate
comes form the Boltzmann distribution of the scatterers.
The effect mentioned above is the result of the short
range correlation between the scatterers due to the physi-
cal picture of the interactions.

In fact, our motivation comes from a model of
diffusion in a solid. We describe in Sec. II the physical
problem, and simplify it in Sec. III in order to obtain a
solvable model. Sections IV and V give the behavior of
the transmission probabilities and the decay of the veloci-
ty. Our results are analytically exact and involve no ap-
proximation beyond the simplification done in Sec. III.

II. DESCRIPTION OF THE MODEL

The general idea of the model is that of a diffusion of a
particle P in a harmonic solid. We consider a linear lat-
tice of sites labeled n (integers). At each site of the lat-
tice, a scatterer can move transversally to the lattice.
The state of a scatterer at n is a certain number g, which
measures the distance of the scatter to the lattice (see Fig.
1). The scatterers interact via near-neighbor harmonic
interaction. The corresponding potential is
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FIG. 1. Initial model: Solid circles, correlated scatterers at
positions (n,q,). A particle propagates on the straight line Ox
and interact with scatterers if their distance with Ox is <R,
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We assume that a configuration {g,} of the scatterers is
fixed and chosen according to the Boltzmann distribution
< exp(—BV).

Now we consider a particle P moving on the linear lat-
tice with a velocity v =*1, according to the following
rules: When P arrives at a site n with a certain velocity v,
if the scatterer g, is far from the lattice (lq,,l>R0, for
some given R,), the scatterer does not interact with the
particle; P keeps its velocity unchanged and goes to the
neighboring site in the next time step. On the other
hand, when g, is near the lattice (|g,| < R), the scatterer
interacts with P and, as a consequence, it changes the ve-
locity of P with probability p and leaves it unchanged
with probability 1—p.

We will prove that, although the scatterers are only
spatially correlated by near-neighbor interaction through
the potential ¥, the motion of the particle has anomalous
properties with respect to the usual diffusive behavior.
More precisely, we show in Sec. IV that the transmission
probability to get out through L from an interval [0,L]
starting from O with positive velocity varies as L ~!/2InL
for large L (instead of L ~! in the usual diffusion). In Sec.
V we find that the expectation of the velocity decays like
t ~1/2 for large ¢ (instead of the exponential decay).

ITII. SIMPLIFIED DESCRIPTION
OF THE ENVIRONMENT

In order to treat the model analytically, we need a fur-
ther simplification. The successive increments g, {—g,
of the states of the scatterers are independent Gaussian
variables because of the distribution exp(—pS¥). Conse-
quently, g, can be viewed as the position at “time n”’ of a
random walker with successive increments independently
and Gaussianly distributed. We now make a further ap-
proximation and assume that g, is a position at “time n”
of a standard random walk on a lattice with spatial dis-
tance between two neighboring sites by (KB)™'/2 (be-
cause, essentially, the increment g, ., —g, is a Gaussian
variable with that variance).

The important feature of the situation is the following:
The lattice will be partitioned in a succession of stochas-
tic intervals, numbered with positive or negative integers
(see Fig. 2)

vl 5, I, 1g,1,1,,. .. (2)
such that in an odd-numbered interval such as

11,12,13,.. . 9IZk+1"' .oy

the scatterers g, are far from the lattice (|g,|>R,) and
the particle moves freely and in an even-numbered inter-
val such as I_,,I,,...,I5,..., the scatterers g, are
near the lattice (|g,| < R,) and they interact with the par-
ticle.

Let us denote by L; the “length” of I;, or, more exact-
ly, the number of scatterers. The L, are independent
random variables which approximately obey the follow-
ing continuous distributions.

(i) For the odd-numbered intervals, the distribution
probability of the length is

e A A e

I I I3 Ia

FIG. 2. Simplified model: g, performs a random walk. Odd-
numbered intervals contain scatterers g, such that g, > R; par-
ticles do not interact with them (ballistic motion). Even-
numbered intervals contain scatterers g, such that g, <R,; a
particle interacts with them and diffuses (random telegraph
motion).

Prob(L,, +, €[] +dI)=MDdl , 3)

and A(]) has a long tail in ! ~3/2 for large ! (because it is
the law of the return time of a random walk to a given
point R, starting from a point > R;) (see [11]). In par-
ticular, A(l)d! has no finite moment.

(ii) For the even-numbered intervals, the distribution
probability of the length is

Prob(L,, €[, 1 +dl])=u(ldl , (4)

and here p(/) has moments of all orders (because it is the
law of the exit time of a random walk from an interval
[—Rg, +R,] starting inside this interval).

With these notations, we describe our simplified model.
We have a line divided into a succession of intervals as in
(2). The distribution laws of the lengths of thee intervals
are given by Eq. (3) or Eq. (4). When the particle P is in
an odd-numbered interval, it has a ballistic motion with
velocity v =x1. When it is in an even-numbered interval,
it has a random telegraph motion (namely, the velocity v
changes sign at exponential times distributed with an ex-
ponential law e “¥*. To complete the description, we as-
sume that, at time ¢ =0, the particles starts with velocity
+1 at point O and that O is the left extremity of I, (see
Fig. 2).

IV. TRANSMISSION PROBABILITY

In this section we consider the probability P(L) that
the particle starting at O (thus at the beginning of I,) with
velocity +1 gets out for the first time from the interval
[0,L] through L rather than 0. We first notice that the
transmission probability for a random telegraph process
of frequency Y in an interval of length L is

p(L)=

1+xL )



1146

We now distinguish three cases.

(i) L is in I,. Then the particle gets out through L with
probability 1. In computing P (L), this event gives a con-
tribution

Prob(L =L,) . (6)

(i) L is in I, 4, (for k=2 1). The transmission proba-
bility knowing the lengths of the intervals is exactly
p(L,+ --- +L,.). This event gives a contribution

P2k(L)=p(L2+ t +L2k)
XProb{L,+ - - -
+L2kSLSL1+"'+L2k+1} . (7)

() L is in L, (for k=<1). Let us denote
q(Ly,...,Ly,L) the transmission probability knowing
the lengths of the intervals. We have obviously

L L—1, L—1,—1I,
sz(u:fo k(ll)dllfo p(lz)dlzfo Ml - - -
L -1 L—1,—1,
sz_l(L)=fO k(l‘)dl,fo y(lz)dlzfo AMIy)dly - - -

In Appendix A we prove that for L large, we have

InL

P(L)= |50

) (13)

which shows that the transmission probability decays
much more slowly with L than in the usual diffusion.

V. DECAY OF THE VELOCITY
CORRELATION FUNCTION

A. Velocity autocorrelation function in the general case

Let us assume that we start at point x =0, with veloci-
ty v(0)=+1. We also assume that the site x =0 is the
left extremity of the interval I,. Given these conditions,
the velocity autocorrelation function (see [10]) is just
(v(#)). In Fig. 3 we present a numerical simulation of
the slow decay of {v(¢)), namely, for large t:

C

(v(t))=—
t

172 (14)

where C is some positive constant. This simulation was
done with the initial model described in Sec. II, rather
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p(Ly+ -+ +Ly)<q(L,,...,Ly,L)
<p(L,+ -+ +Ly ;). ®)

This event gives a contribution
QO —1(L)=gq(Ly, ..., Ly,L)
XProb{L,+ -
+Ly SL=ZL+---+L,},
9)

so that

P(L)=Prob(L <L)+ 3 Qy _(L)+ 3 Py(L).

k>1 k>1
(10)
Moreover, it is easily found that
L—1, =1 =l _
] H uydly,
XfL*Il*”'4]Zk}\'(12k+])d12k+1
Xp(ly, ..., L), 11
L=l =1 =1, _
[ F T Mgyl

Xq(ly, ... 1L .
(12)

than the simplified model, with 10° barriers until about
2X10° time steps.

We have not been able to prove this result analytically.
Nevertheless, we now present some analytic work which
rigorously confirms the slow decay.

002 :

L
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<v(t) v(tost)> [
0
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FIG. 3. Velocity correlation function for random telegraph
process (RTP) in the intervals of interaction: Dots, numerical
results; solid line, best fit with curves K7 !/2 (K ~0.04). RTP
relaxation frequency, 0.2; R,=10; lattice spacing, 1; absolute
velocity, 1.
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B. Strong field case

Let us come back to the simplified model of Sec. III
and let us also impose a strong field pointing to the right.
The action of this field on the particle is the following:
When the particle is near a scatterer (in the even-
numbered intervals), it is only subjected to the action of
the scatterer and does not feel the field. On the other
hand, when the particle is far from the scatterer (odd-
numbered intervals), it always has a ballistic motion with
uniform velocity v=+1. In particular, when the particle
is in an even-numbered interval I,;, where it follows a
random telegraph process, it can only exit through the
right extremity of the interval, because as soon as it
enters the odd-numbered interval I,; _; coming from the
right, it feels the field and is pushed back in I,;. It is
clear that (v (z)) tends to 1 when ¢ tends to infinity. In
an ordinary random telegraph process, {v(¢)) —1 would
decay exponentially fast like e X' where ¥ is the frequen-
cy of the random telegraph process. Here we shall prove
that for large ¢,

(v())—1= (15)

=

for some negative constant K that we can actually com-
pute explicitly. This confirms the numerical simulations
in the absence of the strong field.

We briefly sketch the mathematical arguments, leaving
the details to Appendix B. First, when the particle is in
an odd-numbered interval I,; ,, the exit time starting
from the left extremity of I,; , , is just L,; ,,. Moreover,
when the particle starts from the left extremity of I,;, the
exit time T,; from I,; is the exit time of a random tele-
graph process from an interval I,; of length L,, with a
reflecting barrier at the left extremity of I,;, (because the
strong field prevents the particle from reentering an al-
ready visited odd-numbered interval). Let us denote

V() =Co(em({t <Ty})) , (16)

n(E) being the characteristic function of an event E:
n(E)=1 if E is realized, and O otherwise. Thus, V(#) is
the expectation value of the velocity at time ¢ during the
motion in I,;, if the particle starts from the left extremity
of I,;. Let us also denote

7(t)dt =Prob(T,; €[t,t +dt]) . (17)
As for (10), we have

(v())=Prob(T<L;)+ 3 Prob(L,+T,+L;+  ++ +T,, <t <L, +T,+ -+ +T,,+Ly,4,)

n=1

+ 3 (v(em{L+T,+ - +Ly St<Li+ - +Ly,_+T,,}) . (18)

n21

It is easy to see that

Prob(L,+T,+ -+ +T,, <t <L, +Ty+ -+ +T,,+L,, +;)=(Aorororo

crroANt), (19)

where we have n times 7 and n times A, o denoting convolution, and where we have written

A= [ "Ml . (20)
1
Moreover,

(v(tW{L+Ty,+ -+ +Ly _St<L;+ - +Ly _+T,,})=(Vorodoro ---0A)2), @21

with n times A and n —1 times 7. From (18), (19), and
(21), we see that the Laplace transform of (v(¢)) is

J7em o win)de= Alo)+Ro)P(a)

1—A(o)r(o) 22
In Appendix B it is proved that for large ¢,
(sz ) - ( T2k ) 1
(v(t))—lz—KV;————-—Tt , (23)
where

Ro)=e K7 (see [10], for example) ,
(sz)=fl°°1y(l)dl ,

(Ty )= flml“(l)( Ty |Ly=1)dl ,

and (T, |L, =) is the conditional expectation of the
exit time from [0,L,; ] of the random telegraph particle
starting from O at time O and reflecting back at 0, know-
ing that L,,=Il. We notice that in Eq. (23),
(L, ) —( T, ) is indeed negative, because the expected
exit time of the interval I,; of length L,,, starting from
its extremity and with reflexion at this extremity, is
greater than the expected length.

In Appendix C we evaluate the constant in the second
member of (23) and we prove that for large R,

3

RO
(U(t)>—l~——‘/—? .

This is obviously not uniform in ¢. In fact, if R, was
infinite, the particle would experience a standard random
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walk in the lattice of integers, because the diffusing parti-
cle would interact with every scatterer, and the diffusion
would be normal.

This result, Eq. (23) or Eq. (14), expresses a slow decay
law as in one-dimensional hydrodynamics (see [10]), but
here the physical origin of this decay law is not the same
as in hydrodynamics. In hydrodynamics, the slow decay
is essentially due to the backflow built around the moving
particle according to the Navier-Stokes equation. In our
context, we have no such concepts and the decay is essen-
tially controlled by the fluctuations of the environment. It
should also be noted that similar effects often appear in
the properties of transport or reactivity of disordered
media. In particular, the spatial fluctuations of the medi-
um have been shown to slow down the kinetics of various
model chemical reactions [12]. It should also be noted
that our model can be considered as a model with
effectively finite size scatterers (the I,, intervals) separat-
ed by free intervals of length L,; ., with a length distri-
bution A(I)~A P for large I. The calculations of Appen-
dix B then yield a velocity autocorrelation function in
tP72 In the present model, the value B=% comes out
naturally from the Boltzmann distribution of the scatter-
ers.
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APPENDIX A: ESTIMATION
OF THE TRANSMISSION PROBABILITY

Let us define, with the notations of Sec. II,
Pylo)= fo e "oLP, (L)dL .
We notice that from (5),
L)= e w19(1+)(le9 ,
p(L) fo e
so that from (11), the Laplace transform P, (o) is
Py(o)= [ “e (Ao )plo +x0)Al0)d0 ,

where A(/) is defined as in (20).
In the same way, using (9) and (8), we obtain

fo“’e'9[X(a)ﬁ(a+xe]kﬁ(a+xe>de
5@2,(_1(0)5fowe‘e[x(a)ﬁ(a-f—)(e)]k_l
XM(o+x60)d6 ,
where M(I)=f,°°y(l)dl. From (10) we obtain

—0
© e A
— do+ 3 —4(a),
J, ooty 0T 2, G

A~

P(o)=A(0)

(A1)

with

_ofUa+x8)M (g +x6)
1—A(o)ulo +x06)

Alo) [ " do

N ~ © ﬂ(o‘FXe)
< < ¢
—sz—l(a)—A(U)fo € 1—Mo)ulo+x0) -

(A2)

We must now estimate each term in (A1) for small o.

1. Estimation of the first sum in (A1)

We have
K

[1-Alo)]= Vot

K(U)zl
o

because A(o)~e ~KVo for small o (see [10]). Then,

Aoy [e 0t
0 1—A(o)ulo +x0)

- K f‘ﬁe;g d@
Ve Yo 1—A(x0)+KVaa(x6)

This integral can be split into two parts:

-];)E+f+x ’

€
For o =0, the integral f: * is finite.
Moreover, for small o, we have

fe dfe* ~f€ d@e "
o 1-a(x0)+kVop(xd) o —p'(x0)+CVea
_ InV'o
oy’
so that
/A\(U)fme_e — a6 ~ K ln\/_a (A3)
0 1-Xo)alo+x0) @0y Vo

2. Estimation of the second sum in (A1)

We use the bounds (A2). Let us consider the upper
bound for small o:
Rio) [Te M(o +x6)
0 1—Alo)p(o+x0)

© _g M(x6)
~[%e — .
0 1—a(x6)+KVaop(x0)

(A4)

The same computation as before shows that this is
equivalent to Ino. Finally, using (A1), (A3), and (A4), we
obtain

K Ino

) —=,
? 20'(0)x Vo

from which we conclude that

InL
P(L)= VI
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APPENDIX B: ESTIMATION OF THE VELOCITY
CORRELATION FUNCTION IN A STRONG FIELD

We take the Laplace transform of Eq. (18) taking into
account the definition (20), Eq. (19), and (21):

J e o)di= 3 Rio)[Ao)R(0)]"

n=0
+ 3 Poko)[Aa)ko)]",
n20

from which we deduce Eq. (22). The problem is now to
study the small o behavior of the second member of Eq.
(22). First of all, we know that

RNo)=e KVou1—Ko!2+K2/20+0(5%?) , -

K(a%[1—X(a)]~Ka—‘/2—K2/2+0(a”2) .

Now, let us recall that, given L,;, the exit time T,; of
the finite interval [0, L,, ] is finite and its expectation is of
order L%,. As a consequence, using the definition (17),
we have for small o,

No)=1—(Ty )o+0(o) (B2)
and

(T >=f0°°y(1)< Ty |Ly =1)dl . (B3)

But p(/) is the distribution of the exit time of a Brownian
particle from the finite interval [ — R, + R,] and has mo-
ments of all orders, so that (B2) is finite. Moreover, we
have from Eq. (16),

ﬁ(o>=<f0°°vum<[tsrzk})dt>

_ T2k _ — o
—<f0 u(t)dt>—<L2k) [ war

which is also finite. From (Egs. (22), (B1), (B2), and (B4),
we can easily obtain the small o asymptotic expansion

© o, =L <L2k>_(T2k) 1
(foe v(t)dt> —+ e 7=+ ,

from which we deduce Eq. (23).

APPENDIX C: ESTIMATION
OF THE CONSTANT IN EQ. (23)

We want to estimate the constant in Eq. (23). Let us
recall that g, performs a standard random walk on a lat-

tice with spacing ~B~!/? and R, is some distance in this
lattice: Ry=NB~!/2 for integer N. Then A(/) is the den-
sity probability of the first time that, starting from
R,+B7!2, the walker g, comes back to R,. This means
that A(o)~exp(—Ko!”?) and K is an absolute constant.
Now, the conditional expectation { T, |L, =I) is the
exit time from the interval [0,/] of a diffusing particle
starting from O and reflected back at O each time it comes
back to 0, so that it is /2 /2.
Then,

o ]2
(Ty)= [ "Lt (e}

where p(1)dl is the probability distribution of L,,. Thus,
u(l)dl is the probability that a random walk with unit
step, starting from N — 1, leaves the interval [N, + N] for
the first time in [/,/ +dI]. More generally, let us call
1, (1)dl the probability that, starting from —N <x < +N,
the first exit time from [—N,+N] is in [[,] +dl] and
define

~ p— ® —ol
= hdl .
fro)= [ "e = ()
Then, fi, (o) satisfies

i, (o)
T=20ﬁx(0) s

fi,(c)=1 forx=—N or +N,

so that
coshxV 20
~ — — 2
Axla) coshNV 20 €
and
2lo)= cosh(N —1)V2¢ (©3)

coshNV 20

From Eq. (Cl), (T, ) is proportional to the second
derivative of f1(0') at =0 and this is easily seen to be
2N3. Moreover, {L,; )= f Iu(1)dl and is only of order

N2. This proves that for large R,,

C(ROBI/2)3
Vi ’

where C is an absolute positive constant.

(v(t))—1~—
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